Hallo Tom - Ich bin ein Abonnent von Ihnen und frage mich, wenn Sie hatte eine ldquoconversionrdquo Diagramm für die Umwandlung Trendwert in Perioden exponentielle MAs. Zum Beispiel, 10 Trend ist etwa gleich einer 19-Periode EMA, 1 Trend zu 200EMA etc. Vielen Dank im Voraus. Die Formel für das Umwandeln einer exponentiellen gleitenden Glättungskonstante (EMA) in eine Anzahl von Tagen ist: 2 mdashmdashmdash-N 1 wobei N die Anzahl von Tagen ist. Somit würde eine 19-Tage-EMA wie folgt in die Formel passen: 2 2 mdashmdashmdashmdash - mdashmdashmdash - 0,10 oder 10 19 1 20 Dies ergibt sich aus der Idee, dass die Glättungskonstante so gewählt wird, dass sie das gleiche Durchschnittsalter der Daten ergibt Wie in einem einfachen gleitenden Durchschnitt. Wenn Sie eine 20-Periode einfachen gleitenden Durchschnitt hatte, dann ist das durchschnittliche Alter jeder Dateneingabe 9,5. Man könnte meinen, dass das Durchschnittsalter 10 sein sollte, da dies die Hälfte von 20 oder 10,5 ist, da dies der Durchschnitt der Zahlen 1 bis 20 ist. Aber in der statistischen Konvention ist das Alter des jüngsten Datensatzes 0 Das Durchschnittsalter der Daten in einem Satz von N Perioden ist: N - 1 mdashmdashmdashmdash-2 Für exponentielle Glättung, mit einer Glättungskonstante von A , Ergibt sich aus der Mathematik der Summationstheorie, dass das Durchschnittsalter der Daten: 1 - A mdashmdashmdashmdash - A Die Kombination dieser beiden Gleichungen: 1 - AN - 1 mdashmdashmdash mdashmdashmdashmdash A 2 können wir für einen Wert von A, der eine Gleichung erfüllt, lösen EMA auf eine einfache gleitende durchschnittliche Länge als: 2 A mdashmdashmdashmdash - N 1 Sie können eines der Original-Stücke jemals über dieses Konzept zu lesen, indem Sie zu McClellanMTAaward. pdf lesen. Dort haben wir Auszug aus P. N. Haurlanrsquos Flugschrift, ldquoMeasuring Trend Valuesrdquo. Haurlan war einer der ersten Personen, die in den sechziger Jahren exponentielle gleitende Durchschnittswerte verwenden, um Aktienkurse zu verfolgen, und wir bevorzugen immer noch seine ursprüngliche Terminologie eines XX-Trends, anstatt einen exponentiellen gleitenden Durchschnitt um einige Tage zu nennen. Ein großer Grund dafür ist, dass Sie mit einem einfachen gleitenden Durchschnitt (SMA) nur eine bestimmte Anzahl von Tagen zurückblicken. Alles, was älter als diese Rückblickperiode ist, fällt nicht in die Berechnung ein. Aber mit einer EMA, die alten Daten verschwindet nie wird es immer weniger wichtig für den Wert des gleitenden Durchschnitt. Um zu verstehen, warum Techniker sich um EMAs im Vergleich zu SMAs kümmern, zeigt ein kurzer Blick auf dieses Diagramm einige der Unterschiede. Bei Trendbewegungen nach oben oder unten werden eine 10-Trend - und eine 19-tägige SMA weitgehend zusammen sein. Es ist in Zeiten, in denen die Preise abgehackt sind, oder wenn die Trendrichtung ändert sich, dass wir sehen, die beiden beginnen, sich auseinander zu bewegen. In diesen Fällen wird die 10-Trend in der Regel umarmen die Preis-Aktion stärker, und damit in einer besseren Position, um eine Veränderung zu signalisieren, wenn der Preis überquert. Für viele Menschen macht diese Eigenschaft EMAs ldquobetterrdquo als SMAs, aber ldquobetterrdquo ist im Auge des Betrachters. Der Grund, warum Ingenieure verwendet EMAs seit Jahren, vor allem in der Elektronik, ist, dass sie einfacher zu berechnen sind. Um heute den neuen EMA-Wert zu bestimmen, benötigen Sie nur den EMA-Wert von yesterdayrsquos, die Glättungskonstante und den heutigen neuen Schlusskurs (oder ein anderes Datum). Aber um einen SMA zu berechnen, müssen Sie jeden Wert zurück in der Zeit für die ganze Rückblickperiode wissen. Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Mittelwert der Daten 10. Der Manager entscheidet, diese als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist eine Möglichkeit, zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfache Mittelwert oder Mittelwert aller früheren Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Ein anderer Weg, den Durchschnitt zu berechnen, besteht darin, daß jeder Wert durch die Anzahl von Werten geteilt wird, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 wird das Gewicht genannt. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und summieren sich natürlich auf 1.Simple Vs. Exponential Moving Averages Moving-Mittelwerte sind mehr als das Studium einer Folge von Zahlen in aufeinanderfolgender Reihenfolge. Frühe Praktiker der Zeitreihenanalyse beschäftigten sich tatsächlich eher mit einzelnen Zeitreihenzahlen als mit der Interpolation dieser Daten. Interpolation. In Form von Wahrscheinlichkeitstheorien und - analyse, kam viel später, als Muster entwickelt wurden und Korrelationen entdeckt. Einmal verstanden, wurden verschiedene geformte Kurven und Linien entlang der Zeitreihen gezogen, um zu prognostizieren, wo die Datenpunkte gehen könnten. Diese werden nun als grundlegende Methoden, die derzeit von technischen Analyse-Händler verwendet. Charting-Analyse kann bis ins 18. Jahrhundert Japan zurückverfolgt werden, aber wie und wann bewegte Durchschnitte wurden zuerst auf Marktpreise angewendet bleibt ein Geheimnis. Es wird allgemein verstanden, dass einfache Bewegungsdurchschnitte (SMA) lange vor exponentiellen Bewegungsdurchschnitten (EMA) verwendet wurden, da EMAs auf SMA-Gerüsten aufgebaut sind und das SMA-Kontinuum für Plotter und Verfolgungszwecke leichter verstanden wurde. (Möchten Sie ein wenig Hintergrund lesen Check out Moving Averages: Was sind sie) Simple Moving Average (SMA) Einfache gleitende Durchschnitte wurden die bevorzugte Methode für die Verfolgung Marktpreise, weil sie schnell zu berechnen und leicht zu verstehen sind. Frühe Marktpraktiker arbeiteten ohne den Gebrauch der ausgefeilten Diagrammmetriken, die heute benutzt werden, also verließen sie hauptsächlich auf Marktpreisen als ihre alleinigen Führer. Sie berechneten die Marktpreise von Hand, und graphed diese Preise, um Trends und Marktrichtung zu bezeichnen. Dieser Prozeß war sehr langwierig, erweist sich aber mit der Bestätigung weiterer Untersuchungen als recht rentabel. Um einen 10-tägigen einfachen gleitenden Durchschnitt zu berechnen, addieren Sie einfach die Schlusskurse der letzten 10 Tage und dividieren durch 10. Der gleitende 20-Tage-Durchschnitt wird berechnet, indem die Schlusskurse über einen Zeitraum von 20 Tagen addiert werden und sich um 20 dividieren bald. Diese Formel ist nicht nur auf Schlusskurse basiert, sondern das Produkt ist ein Mittel der Preise - eine Teilmenge. Bewegungsdurchschnitte werden als bewegt bezeichnet, weil sich die in der Berechnung verwendete Gruppe von Preisen gemäß dem Punkt auf dem Diagramm bewegt. Das bedeutet, dass alte Zeiten zugunsten neuer Schlusskurstage fallengelassen werden, so dass immer eine neue Berechnung erforderlich ist, die dem Zeitrahmen des durchschnittlichen Beschäftigten entspricht. So wird ein 10-Tage-Durchschnitt neu berechnet, indem der neue Tag hinzugefügt und der 10. Tag fallen gelassen wird, und der neunte Tag wird am zweiten Tag fallen gelassen. Exponential Moving Average (EMA) Exponential Moving Average (EMA) Der exponentielle gleitende Durchschnitt wurde verfeinert und seit den sechziger Jahren aufgrund früherer Experimente mit dem Computer weiter verbreitet. Die neue EMA würde sich mehr auf die jüngsten Preise konzentrieren als auf eine lange Reihe von Datenpunkten, da der einfache gleitende Durchschnitt erforderlich ist. Aktuelle EMA ((Preis (aktuelle) - vorherige EMA)) X Multiplikator) vorherige EMA. Der wichtigste Faktor ist die Glättungskonstante, die 2 (1N) mit N die Anzahl der Tage. Eine 10-Tage-EMA 2 (101) 18,8 Dies bedeutet, dass ein 10-Perioden-EMA den jüngsten Preis 18,8, ein 20-Tage EMA 9,52 und 50 Tage EMA 3,92 Gewicht auf den letzten Tag gewichtet. Die EMA arbeitet, indem sie die Differenz zwischen dem Preis der gegenwärtigen Perioden und der vorherigen EMA gewichtet und das Ergebnis der vorherigen EMA hinzugefügt hat. Je kürzer die Periode, desto mehr Gewicht auf den jüngsten Preis angewendet. Anpassungslinien Nach diesen Berechnungen sind Punkte aufgetragen und zeigen eine passende Linie. Anpassungen über oder unter dem Marktpreis bedeuten, dass alle gleitenden Durchschnitte nacheilende Indikatoren sind. Und werden hauptsächlich für folgende Trends verwendet. Sie funktionieren nicht gut mit Reichweitenmärkten und Perioden der Überlastung, weil die passenden Linien nicht einen Trend aufgrund eines Mangels an offensichtlich höheren Höhen oder niedrigeren Tiefs bezeichnen. Plus, passende Linien neigen dazu, konstant bleiben, ohne Andeutung der Richtung. Eine aufsteigende Montagelinie unterhalb des Marktes bedeutet eine lange, während eine sinkende Montagelinie oberhalb des Marktes ein kurzes bedeutet. (Für eine vollständige Anleitung, lesen Sie unsere Moving Average Tutorial.) Der Zweck der Verwendung eines einfachen gleitenden Durchschnitt ist es, zu erkennen und zu messen Trends durch Glättung der Daten mit Hilfe von mehreren Gruppen von Preisen. Ein Trend wird entdeckt und in eine Prognose hochgerechnet. Es wird davon ausgegangen, dass sich die bisherigen Trendbewegungen fortsetzen werden. Für den einfachen gleitenden Durchschnitt kann ein langfristiger Trend gefunden und gefolgt werden viel einfacher als eine EMA, mit der vernünftigen Annahme, dass die Anpassungslinie stärker als eine EMA-Linie aufgrund der längeren Fokussierung auf Mittelpreise halten wird. Eine EMA wird verwendet, um kürzere Trendbewegungen zu erfassen, aufgrund der Fokussierung auf die jüngsten Preise. Durch dieses Verfahren soll eine EMA jede Verzögerung in dem einfachen gleitenden Durchschnitt reduzieren, so dass die Anpassungslinie die Preise näher umschließt als ein einfacher gleitender Durchschnitt. Das Problem mit der EMA ist dies: Seine anfällig für Preisunterbrechungen, vor allem auf schnellen Märkten und Zeiten der Volatilität. Die EMA funktioniert gut, bis die Preise die passende Linie brechen. Bei höheren Volatilitätsmärkten könnte man erwägen, die Länge des gleitenden Durchschnittsbegriffs zu vergrößern. Man kann sogar von einer EMA zu einer SMA wechseln, da die SMA die Daten viel besser macht als eine EMA aufgrund ihres Fokus auf längerfristige Mittel. Trendindikatoren Als Nachlaufindikatoren dienen die gleitenden Mittelwerte als Unterstützungs - und Widerstandslinien. Wenn die Preise unter einer 10-tägigen Anpaßlinie in einem Aufwärtstrend brechen, sind die Chancen gut, dass der Aufwärtstrend schwächer werden kann, oder zumindest kann sich der Markt konsolidieren. Wenn die Preise über einen 10 Tage gleitenden Durchschnitt in einem Abwärtstrend brechen. Kann der Trend abnehmen oder konsolidieren. Verwenden Sie in diesen Fällen einen 10- und 20-Tage gleitenden Durchschnitt zusammen, und warten Sie, bis die 10-Tage-Linie über oder unter der 20-Tage-Linie zu überqueren. Diese bestimmt die nächste kurzfristige Richtung für die Preise. Für längere Zeiträume, beobachten Sie die 100- und 200-Tage gleitende Mittelwerte für längerfristige Richtung. Wenn man beispielsweise den 100- und 200-Tage-Gleitdurchschnitt verwendet, wenn der 100-Tage-Gleitende Durchschnitt unter dem 200-Tage-Durchschnitt überschreitet, nennt man ihn das Todeskreuz. Und ist sehr bärisch für die Preise. Ein 100-Tage-Gleitender Durchschnitt, der über einen 200-Tage gleitenden Durchschnitt kreuzt, wird das goldene Kreuz genannt. Und ist sehr bullisch für die Preise. Es spielt keine Rolle, wenn ein SMA oder eine EMA verwendet wird, weil beide Trend-folgende Indikatoren sind. Seine nur in der kurzfristigen, dass die SMA hat geringfügige Abweichungen von seinem Pendant, die EMA. Fazit Die gleitenden Durchschnitte sind die Grundlage der Diagramm - und Zeitreihenanalyse. Einfache gleitende Durchschnitte und die komplexeren exponentiellen gleitenden Durchschnitte helfen, den Trend zu visualisieren, indem sie Preisbewegungen ausgleichen. Technische Analyse wird manchmal als Kunst und nicht als Wissenschaft bezeichnet, die beide Jahre in Anspruch nehmen. (Weitere Informationen finden Sie in unserem Technical Analysis Tutorial.)
No comments:
Post a Comment